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Abstract

Age is the strongest risk factor for sporadic Alzheimer disease (AD), yet the effects of age on rates of clinical decline and
brain atrophy in AD have been largely unexplored. Here, we examined longitudinal rates of change as a function of baseline
age for measures of clinical decline and structural MRI-based regional brain atrophy, in cohorts of AD, mild cognitive
impairment (MCI), and cognitively healthy (HC) individuals aged 65 to 90 years (total n = 723). The effect of age was
modeled using mixed effects linear regression. There was pronounced reduction in rates of clinical decline and atrophy with
age for AD and MCI individuals, whereas HCs showed increased rates of clinical decline and atrophy with age. This resulted
in convergence in rates of change for HCs and patients with advancing age for several measures. Baseline cerebrospinal
fluid densities of AD-relevant proteins, Ab1–42, tau, and phospho-tau181p (ptau), showed a similar pattern of convergence
with advanced age across cohorts, particularly for ptau. In contrast, baseline clinical measures did not differ by age,
indicating uniformity of clinical severity at baseline. These results imply that the phenotypic expression of AD is relatively
mild in individuals older than approximately 85 years, and this may affect the ability to distinguish AD from normal aging in
the very old. Our findings show that inclusion of older individuals in clinical trials will substantially reduce the power to
detect disease-modifying therapeutic effects, leading to dramatic increases in required clinical trial sample sizes with age of
study sample.
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Introduction

Age is the strongest risk factor for sporadic Alzheimer disease

(AD) [1,2], the most common cause of dementia. Due to growth in

the proportion of elderly individuals in many societies, the

prevalence of AD is increasing at an alarming rate [3–5].

Individuals over 85 years of age comprise the fastest growing

segment of US society [6], yet it is not clear whether AD

progresses in the same manner among the very old as among

individuals who are affected at a younger age.

Pathologically, AD is characterized by the misfolding [7–9] and

accumulation of amyloid-beta (Ab) and tau proteins in insoluble

aggregates, leading to the formation of amyloid plaques and

neurofibrillary tangles (NFTs) [10,11]. The increase in burden of

these hallmark AD lesions in normal aging [12–14], combined

with the increasing inability of aging cells to maintain disease

proteins in benign states [15] and the exponential growth in the

incidence of AD with increasing age (at least through approxi-

mately 85 years [16]), could suggest that the rate of decline in AD

also increases with age. Emerging literature indicates, however,

that the burden of AD lesions in individuals with AD decreases

with age [17], while cognitive and structural changes might be

more salient in younger rather than older individuals with AD

[18]. This may reduce the ability to detect AD among the oldest

old, potentially contributing to the controversy over whether AD

incidence rates go up, down, or remain stable after age 85 [16].

Since the elderly population is growing, and proportionally

growing faster with increasing age, it is important to better

understand whether and how age interacts with the disease process

to affect rates of decline. Here, we investigated whether rates of

clinical decline and structural MRI-based measures of regional

brain atrophy differ according to age among healthy controls

(HCs) and individuals with mild cognitive impairment (MCI) or
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AD. We also assessed age-dependence of baseline clinical

measures, and morphometric and cerebrospinal fluid (CSF)

biomarkers of AD pathology. We explored the implication of the

observed age-related differences in atrophic and clinical rates of

decline for clinical trial design, and for disease biomarker

trajectories.

Methods

We examined participants from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI, www.adni-info.org). Relevant

details of ADNI, including participant enrollment criteria, MR

image acquisition, and CSF collection and analysis methods are

provided in File S1.

Participants
Participants enrolled in ADNI are not depressed, have a

modified Hachinski score of 4 or less, and have a study partner

able to provide an independent evaluation of functioning. HC

participants have a Clinical Dementia Rating (CDR) of 0 [19].

Participants with MCI have a subjective memory complaint,

objective memory loss measured by education-adjusted scores on

Wechsler Memory Scale Logical Memory II, a CDR of 0.5,

preserved activities of daily living, and absence of dementia.

Participants with AD have a CDR of 0.5 or 1.0 and meet National

Institute of Neurological Disorders and Stroke and Alzheimer’s

Disease and Related Disorders Association criteria for probable

AD [20]. Further details on inclusion/exclusion criteria are

described in the ADNI 1 protocol (available at www.adni-info.

org/Scientists/ProceduresManuals.aspx).

We evaluated 723 older participants (222 HC, 345 MCI, and

156 AD, Table 1), who were tested at 6- or 12-month intervals for

up to 24 (AD) or 36 (HC and MCI) months. The research protocol

was approved by each local institutional review board, and written

informed consent was obtained from each participant. To exclude

patients with early-onset AD [21], and to have a balanced age

range of HC and MCI individuals with respect to the AD cohort,

we restricted analysis to participants aged 65 years or older at

baseline.

MRI Image Processing
We preprocessed all MRI scans using image correction

procedures for site-specific distortion effects updated for recent

scanner changes [22]. We quantified anatomical regional change in

serial MRI using Quarc [23,24], a recently developed method

from our laboratory. The longitudinal outcome measure of change

with respect to baseline was calculated by directly registering each

followup scan to the baseline scan. To evaluate baseline region of

interest (ROI) measurements, we used a structural MRI post-

processing technique that automatically delineates subcortical [25]

and cortical [26] ROIs. We analyzed data from all available time

points that passed local quality control (total = 2204). The number

of followup scans was reduced by approximately 15% primarily

due to motion artifacts, change in scanner model, or change in RF

coil, as described in [22].

Methodological bias in image registration leading to elevated

effect sizes remains a concern in the AD structural neuroimaging

literature [24], particularly given recent reports [27–32] of results

that are ostensibly corrected for bias but in fact, as shown in [24],

remain significantly biased. Several research groups have devel-

oped robust approaches to reducing or eliminating bias [33,34].

Our explicitly inverse-consistent approach [23] essentially elimi-

nates potential bias by combining forward and reverse image

registrations, and has been assessed vis-à-vis other approaches in

[24].

Clinical and CSF Measures
We analyzed age-dependence of baseline values and longitudi-

nal rates of change for clinical measures used to assess disease

severity–the Clinical Dementia Rating Scale, sum of boxes score

(CDR-SB) [19,35]; the cognitive subscale of the Alzheimer’s

Disease Assessment Scale (ADAS-Cog); and the Mini Mental State

Exam (MMSE). There were 493 AD, 1474 MCI, and 795 HC

participant-visits (total = 2762).

We also examined whether values of three previously validated

CSF biomarkers of AD pathology, Ab1–42 (Ab), tau, and phospho-

tau181p (ptau), differed with age at baseline. CSF data were

available on approximately half of the participants, as indicated in

Table 1.

Mixed Effects Modeling
Longitudinal outcomes (Yij below) in all cases were change

measured with respect to baseline (expressed as a percentage of

baseline size for cortical thickness change and ROI volume

change). MRI change-measures for each participant were

Table 1. Number of participants in each age group, for each class of measure analyzed, separately for longitudinal and baseline
analyses.

Baseline Age
(years) Longitudinal Baseline

MRI Clin CSF Clin

HC MCI AD HC MCI AD HC MCI AD HC MCI AD

[65 70) 5 37 20 5 45 21 4 25 10 5 47 22

[70 75) 78 77 26 86 91 42 47 52 22 97 98 43

[75 80) 59 73 34 65 87 44 38 47 27 75 89 49

[80 85) 25 65 25 28 76 37 15 34 21 31 81 42

[85 90) 12 21 – 13 30 – 5 15 – 14 30 –

Total 179 273 105 197 329 144 109 173 80 222 345 156

Clin = clinical measure: ADAS-Cog, CDR-SB, MMSE. CSF data were obtained at baseline for approximately half the study sample. Note that in each age bracket, age
extends up to, but does not include, the highest age indicated (age groups do not overlap).
doi:10.1371/journal.pone.0042325.t001
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calculated from directly registering each followup image to the

participant’s baseline image [23].

Using all available time-points per participant, we investigated

the relationship between atrophy rate and age, and rate of clinical

decline and age using a linear mixed effects model [36] where, for

a specific diagnostic group, the longitudinal outcome measurement

Yij at time tij for participant i at followup timepoint j is Yij = mitij +
biaitij + eij. Here, eij is the within-participant error, assumed to be

independent and identically normally distributed with zero mean

and variance se
2; mi = m + ci, where m is the fixed effect slope

(mean rate of change for the group at the average age of the group)

when controlling for age effects and ci is the corresponding

between-participant random effect slope with variance sm
2; ai is

the mean-centered baseline age (years) of participant i, i.e., the

participant’s baseline age minus the average baseline age for the

group, and bi = b + di, where b is the additional, age-coupled, fixed

effect contribution to the slope and di is the corresponding

between-participant random effect slope with variance sb
2. We

estimated the model parameters using the Matlab (R2009b)

function nlmefit.

We tested the resulting linear fit for each cohort’s full data set

against point estimates of annual rate of change, with 95%

confidence intervals (CIs), for successive 5-year intervals in

baseline age, calculated without an age-dependent term (setting

the regression coefficients bi;0), to assess the correctness of the

estimated age-dependence of group atrophy rates. This means

that, in addition to the mixed effects model just described applied

to the full data set, we also assessed successive 5-year age ranges

using a simpler mixed effects model, i.e., one not controlling for

age, on the assumption that if there are any age-effects for 5-year

windows they will be small and can be ignored. In other words, for

each 5-year interval, we directly calculate the atrophy rate (as

previously done in [24]) ignoring age as a covariate. All our

regression models are linear in the regression parameters and all

covariates, including time.

To determine the significance of the differences, between

groups, of the slopes estimated for the linear dependence of

atrophy rate on age, as shown in Tables 2 and 3, we used two-

sample t-tests for independent samples with unequal variances

(Satterthwaite’s method [37]).

We used generalized linear model regression to estimate group

baseline values as a function of age for CSF, cognitive, and

structural measures. We tested the resulting linear fit against point

estimates from successive 5-year intervals in baseline age and

plotted the results with 95% CIs.

Sample Size Estimates
The disease effect, or maximum potentially treatable effect, for a

patient cohort is the rate of decline calculated from the linear

mixed effects model for the patient cohort that is in excess of that

calculated for the HCs [24], and is potentially age-dependent. To

estimate the sample size required in a two-arm (equal allocation)

trial of a hypothetical disease-modifying treatment versus placebo,

we assumed the treatment effect size of interest was 25% of the

maximum potential treatment effect. We further assumed that the

trial was of 24-months duration with a 6-months assessment

interval, and that it would have 80% power to detect the treatment

effect using a 2-sided significance level of 0.05 [24]. The power

calculations, modeling linear change over time for each participant

as described above, for a given age, and based on the estimated

rate of decline for the patient cohorts relative to the rate of decline

experienced at that age by HCs, incorporated the variance

parameters for the patient cohort estimated from the mixed effects

model [36]. Confidence intervals of 95% for sample size were

based on 95% confidence intervals for the treatment effect size of

interest.

Results

Annual Rates of Atrophy and Clinical Decline
Figure 1 shows annual atrophy rates versus age for several

neuroanatomical ROIs, for HC, MCI, and AD participants. The

lines represent group fixed effects linear fits from mixed effects

modeling of atrophy rates, including a linear dependence of

atrophy rate on baseline age. The point estimates (with 95% CIs)

for successive 5-year intervals are derived from independent linear

mixed effect modeling without a baseline age term, and thus show

the mean change experienced by participants in each 5-year age

group, in each diagnostic category. The closeness of fit of the point

estimates to the fixed-effects lines throughout the age range of 65

to 90 years demonstrates a strong linear dependence of atrophy

rate on baseline age. Of particular significance is the pronounced

decrease in atrophy rate with increasing baseline age for patient

cohorts, while for HCs rates of decline either remain constant or

increase with age (slopes and p-values are in Table 2). The

differences in slopes between HC and patient groups were highly

significant for all ROIs (p-values are in Table 2). This leads to a

pattern of convergence in atrophy rates across the patient and

control groups as age increases. Although reduction in atrophy

rate for patient cohorts is observable in all ROIs, the degree of

convergence across diagnostic groups at later ages is not uniform

among ROIs. In particular, ROIs affected early in AD–the

hippocampus and entorhinal cortex–maintain a significant differ-

ence in atrophy rates between HCs and AD individuals, even at

85 years, while atrophy rates for whole brain and inferior parietal

cortex, for example, show almost complete convergence among

diagnostic groups at this age.

Figure 2 shows annual rates of decline versus age for CDR-SB,

ADAS-Cog, and MMSE. Rate of decline for CDR-SB did not

change with age. However, AD patients showed a decrease in rate

of decline for ADAS-Cog and MMSE, whereas HCs showed a

small increase in rate of decline for these measures with age,

resulting in a pattern of convergence in rates of decline with

advancing age (slopes and p-values are in Table 3). The differences

in slopes for MMSE between HC and both patient groups, and for

ADAS-Cog between HC and AD were highly significant (p-values

are in Table 3).

Baseline Clinical and CSF Measures
Figure 3, right column, shows the estimated relation of baseline

clinical measures to baseline age, modeled with linear fits, along

with the independent point estimates, with 95% CI, at successive

5-year intervals for HC, MCI, and AD participants. For all three

measures, diagnostic groups are well separated across the age

range, with no evidence of age-dependency on baseline clinical

score.

In contrast, Figure 3, left column, indicates an age-dependency

for baseline values of CSF Ab, tau, and especially ptau. At the

younger age range, AD patients show higher ptau levels than HCs.

However, ptau significantly increases with age in HCs (slope

= 0.64 pg/(mL year); p = 0.035) but significantly decreases with

age in AD (slope = 21.2 pg/(mL year); p = 0.0038).

Plots of the age-dependence of baseline structural measures are

shown in Figure 4. As expected, structures continue to atrophy as

age advances (negative slopes for the HCs), and as disease

advances (in general, smaller structures for more advanced disease

stages at any given age). Differences in baseline structural

measures between AD and HC groups decrease with advancing

Rates of Decline in AD Decrease with Age
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age for whole brain, inferior parietal lobule, and retrosplenial

cortex.

Rate of Progression to AD
Of 329 MCI participants with longitudinal clinical data aged

65 years and older, 127 participants were known to progress to

AD within 36-months from baseline. Data points in Figure 5 show

the percentage of these converters for successive 3-year baseline

age intervals. Linear fit to the data has slope = 20.94%/year

(standard error = 0.11, p = 0.00016). Between the ages of 65 and

90 years, the estimated progression rate approximately halves:

from almost 50% to 25%.

Sample Size Estimates
Figures 6 and 7 show sample size estimates (with approximate

95% CIs) as a function of baseline age for MCI and AD

participants, respectively, using rates of change relative to age-

matched HCs in neuroanatomical ROIs and standard clinical tests

Figure 1. Mixed effects model fit for annual atrophy rates, allowing for linear change with age. Data points plotted, with 95% confidence
intervals, are independent estimates of the atrophy rates for successive 5-year intervals for a mixed effects model fit without an age-dependent term.
Slopes and p-values of the linear fits of atrophy rates with age for each cohort are shown in Table 2. Note that atrophy rate is shown by a signed
value; thus a reduction in atrophy rate with age is evidenced by a positive slope in the linear fit. Legend: red = AD; blue = MCI; green = HC.
doi:10.1371/journal.pone.0042325.g001

Table 2. Slopes and p-values for annual atrophy rates as a function of age shown in Figure 1.

Measure Slopes (% atrophy/year2) P-values

HC MCI AD HC MCI AD HC-MCI HC-AD MCI-AD

Hippocampus 20.040 0.018 0.073 0.004 0.32 0.024 0.011 0.001 0.13

Whole brain 0.004 0.028 0.067 0.54 461025 ,1026 0.010 961026 0.006

Entorhinal 20.031 0.059 0.043 0.060 361024 0.062 0.0001 0.009 0.59

Inferior parietal 20.002 0.068 0.155 0.81 ,1026 ,1026 861026 ,1026 0.0005

Middle temporal 0.006 0.081 0.179 0.59 ,1026 ,1026 0.0001 ,1026 0.001

Retrosplenial cortex 20.010 0.050 0.103 0.19 ,1026 161026 161026 161026 0.021

Bold underlined entries highlight slope values that significantly differ from zero. The three right hand columns give p-values for differences in slopes between cohorts.
Two-sample t-test for independent samples with unequal variances (Satterthwaite’s method [37]) was used to calculate p-values for pair-wise comparisons (last three
columns).
doi:10.1371/journal.pone.0042325.t002
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as the outcome measures [24]. For neuroanatomical measures,

substantially smaller sample sizes are needed to effectively power a

clinical trial at younger ages, while at older ages the sample size

estimates rise sharply. However, the baseline age at which the

sharp increase sets in depends on the ROI: e.g., ,75 years for

whole brain and inferior parietal, ,80 years for hippocampus,

and .85 years for entorhinal, in AD participants. This rapid

increase in estimated sample size with age stems from the

convergence pattern in atrophy rates seen in Figure 1. A similar

pattern is observed with ADAS-Cog as the outcome measure,

consistent with the convergence across groups in annual rate of

decline shown in Figure 2. The age-dependence of sample size

estimates is less marked for the CDR-SB, but estimated sample

sizes are still larger for older as compared with younger cohorts.

(The effect of reduction in unexplained random slope variance by

including age as a random effect is described in File S1.).

Potential Bias Due to Differential Dropout
It is possible that results could be affected by differential

withdrawal rates. For example, the patterns of observed results

could be explained if older patients with more severe symptoms

withdrew after baseline from the study at a higher rate than

younger subjects (e.g., due to increased morbidity or mortality).

We therefore examined study discontinuation rates by age and

symptom severity. Across MCI participants, 16 (4.6%) participants

withdrew after the baseline session; these dropouts were distrib-

uted across the age ranges (2 aged 65–70; 7 aged 70–75; 2 aged

75–80; and 5 aged 80–85), with the exception that all MCI

participants in the oldest age group completed at least one

additional follow-up. For AD patients, 12 (7.7%) withdrew after

the baseline session: 1 each in the 65–70 and 70–75 age groups,

and 5 each in the 75–80 and 80–85 age groups.

There was no age-bias among the MCI participants who

retained the diagnosis of MCI but who withdrew before the final

(36-months) visit. For example, the ratio of the number of stable

MCI participants with at least one followup but without a final

visit, to the total number of MCI participants with at least one

followup, for successive 5-year age groups between 65 and

90 years, was, respectively, 0.42, 0.44, 0.46, 0.46, and 0.57. Thus,

differential dropout was unlikely to affect the estimated rate of

progression to AD as a function of age.

Individuals who withdrew from the study after the baseline

session did not differ significantly in symptom severity from those

who completed one or more follow-up sessions. For example, MCI

patients who withdrew after baseline showed a mean ADAS-Cog

score of 11.1 (standard deviation, SD = 4.4) versus 11.6 (SD = 4.4;

p = 0.65) for those who completed one or more follow-ups. For AD

subjects, mean ADAS-Cog scores were 18.1 (SD = 4.3) and 19.9

(SD = 5.7; p = 0.24) for those who withdrew after baseline and

those who completed at least one follow-up, respectively.

Discussion

In this study, we present three lines of evidence indicating that

AD proceeds more aggressively among younger elderly than

among older elderly individuals, leading to a blurring of the

distinction between AD and HC among the oldest old. First, we

found that annual brain atrophy rates for AD and MCI individuals

decrease with increasing baseline age, while atrophy rates for

clinically normal older individuals remain constant or exhibit a

slight increase with age. Second, we found that baseline CSF

biomarker levels indicated greater disease burden in younger than

in older MCI and AD patients, while disease burden increased

Figure 2. Mixed effects model fit for annual rates of clinical
decline, allowing for linear change with age. Data points plotted,
with 95% confidence intervals, are independent estimates of rates of
change for successive 5-year intervals for a mixed effects model fit
without an age-dependent term. Slopes and p-values of the linear fits
for each diagnostic group are shown in Table 3. Legend: red = AD; blue
= MCI; green = HC.
doi:10.1371/journal.pone.0042325.g002

Table 3. Slopes and p-values for annual rates of clinical decline as a function of age shown in Figure 2.

Measure Slopes (decline/year2) P-values

HC MCI AD HC MCI AD HC-MCI HC-AD MCI-AD

CDR-SB 20.001 20.001 0.004 0.671 0.917 0.89 0.99 0.86 0.87

ADAS-COG 0.063 0.009 20.155 0.004 0.771 0.068 0.14 0.013 0.069

MMSE 20.029 0.041 0.147 0.013 0.025 0.004 0.001 0.0007 0.047

Bold underlined entries highlight slope values that significantly differ from zero. The three right hand columns give p-values for differences in slopes between cohorts.
P-values for the last three columns were calculated as in Table 2.
doi:10.1371/journal.pone.0042325.t003

Rates of Decline in AD Decrease with Age
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Figure 3. Linear fit to baseline CSF and cognitive measures, along with independent estimates of baseline measures (with 95%
confidence intervals) at successive 5-year intervals. Legend: red = AD; blue = MCI; green = HC.

Figure 4. Linear fit to baseline structural MRI measures, along with independent estimates of baseline measures (with 95%
confidence intervals) at successive 5-year intervals.
doi:10.1371/journal.pone.0042325.g004
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with age among HCs. Third, we found that AD patients showed

reduced rates of cognitive decline with increasing baseline age,

despite uniformity of cognitive impairment at study entry. These

findings have important implications for detection of AD among

the oldest old, for the design of clinical trials of potentially disease-

modifying therapies, and for biomarker and clinical disease

trajectories.

All ROIs examined showed a decrease in longitudinal atrophy

rate for MCI and AD individuals with increasing age at study

entry. This decrease was most apparent in association cortices that

tend to be affected later in the disease process, such as the inferior

parietal lobule, middle temporal gyrus, and the retrosplenial

cortex. The decrease in rate of atrophy with age in patient groups,

combined with a trend toward increasing atrophy rates with age

for HCs, resulted in a pattern of convergence of atrophy rates in

association cortices across all diagnostic groups, with close

convergence around 85 years of age, suggesting that in these

brain regions neuronal number in patients is increasingly

preserved with advancing baseline age [12]. However, the ROIs

impacted by NFTs in earliest stages of the disorder (Braak stages I–

II, transentorhinal, and stage III, limbic [38,39]) continued to

show significant differences in rates of decline for patients and

older controls at more advanced ages, although differences were

smaller than those observed at younger ages. Thus the power to

discriminate MCI or AD individuals from HCs is differentially

retained across ROIs, with the medial temporal ROIs that are

particularly vulnerable to early neurofibrillary pathology retaining

the strongest discriminative ability with advancing age.

In cross-sectional analyses, levels of disease burden as measured

by CSF biomarkers decreased with increased age at study entry for

MCI and AD participants, but increased with age for HC

participants. The difference in the age-dependence of these

biomarkers between patients and controls was particularly strong

for ptau, leading to full convergence of ptau levels across patient

groups at 85 years. The increase in ptau levels with age in HCs

likely reflects increased burden of AD-specific neurofibrillary

pathology [40], and may underlie the increase with age in rate of

clinical decline [41] and atrophy rate for the entorhinal cortex and

hippocampus [42] observed here for HCs.

Consistent with the structural MRI results, rates of longitudinal

cognitive decline also showed convergence between patient and

HC groups with increasing age at study entry. AD patients showed

significant decrease in rate of decline on MMSE and a trend

towards reduced rates of decline on ADAS-Cog with increased

age, decreasing the difference in rates of decline between AD and

HCs with increasing age. Due to uniform enrollment criteria

across age, however, baseline cognitive measures did not differ

with age within diagnostic groups, and showed constant separation

among groups across age. This indicates that within each

diagnostic group, individuals were at a uniform cognitive stage

irrespective of baseline age. The differences observed in baseline

CSF biomarkers and in rates of cognitive and structural change

with age therefore do not stem from differences in clinical severity

with age at the time of enrollment, but instead appear to reflect a

decrease in rate of disease progression with baseline age. Within-

cohort rates of decline for CDR-SB, however, were independent of

age. CDR-SB measures global clinical or functional change, and

may therefore not be as sensitive as ADAS-Cog to small declines in

cognition [43]. A similar result was found in a recent study of age

and rate of cognitive decline in AD [44], which also observed that

older age at baseline was significantly associated with a slower rate

of decline in ADAS-Cog 11, ADAS-memory, and MMSE. This

decrease in rate of cognitive decline is consistent with our results

showing decrease in 3-year rates of progression from MCI to

Figure 5. Data points show percentage, for successive 3-year age groups, of participants who progressed to dementia within 36-
months from baseline. Linear fit to data has slope = 20.94 [%/year] (standard error = 0.11, p = 0.00016). Ratios give the number of those who
developed dementia to the total number of MCI participants, for each 3-year age window.
doi:10.1371/journal.pone.0042325.g005
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dementia with advancing age: close to 50% of MCI participants

aged 65 years developed dementia, whereas only about 25% of

those aged 85 years did.

These findings showing a decrease with advancing age in

multiple measures of neurodegeneration between AD patient

cohorts and HCs are in agreement with earlier research showing

that the correlation between dementia severity and NFT burden

decreases with advancing age [45], and a more recent study

assessing prevalence of moderate or severe pathological lesions in

participants aged 69 to 103 years, which found attenuation with

advancing age in the association between dementia and the

densities of both neuritic plaques and NFTs in all examined ROIs

[17]. In contrast, however, the latter study also found that

dichotomized measures of neocortical and hippocampal atrophy

allowed for distinguishing individuals with dementia from those

without dementia, regardless of age, in agreement with the

retained discriminative ability of hippocampus and entorhinal

cortex measures shown here. Our findings are also in agreement

with a recent cross-sectional analysis showing that the AD-related

cognitive and structural MRI changes seen in AD patients aged

60–75 years are less salient in patients aged 80–91 years [18], and

a recent longitudinal MRI analysis showing that rates of whole

brain atrophy were greater in younger than older participants with

amnestic MCI [46].

Our results showing smaller baseline structure size in older as

compared with younger participants, modeled using linear fits with

age, are in broad agreement with earlier manual and automated

volumetry analyses [47–49]. In the latter study [49], covering the

seventh through tenth decades in age, a generalized additive

model (GAM) [50] was used, and nonlinear trends in baseline

structure size as a function of age were reported. In the later

decades, in particular, the cross-sectionally assessed atrophy

accelerated or decelerated with age, depending on ROI and

diagnostic group. It should be noted that cross-sectional analyses

are not the most accurate approach to estimating longitudinal

rates of change. It is also important to note that with GAMs the

uncertainty in estimated structure size as a function of age can

grow substantially from the middle of the age range toward the

younger and older extremes in the age range modeled–which is

often where the estimated nonlinearities tend to be most

pronounced. This increased uncertainty may help account for

discrepancies with other findings. For example, cross-sectional

analysis comparing manual with voxel-based morphometry

measures of hippocampal volume in healthy individuals [47]

indicates acceleration of hippocampal atrophy with age in HCs.

This is in agreement with our longitudinal results and in broad

agreement with earlier results from manual longitudinal volumetry

[51,52], but is at variance with the deceleration of hippocampal

atrophy with age in HCs resulting from the GAM analysis of cross-

sectional data [49].

Our findings of reduced rates of clinical and morphometric

decline with age in patients with AD may help shed light on the

contradictory results that have been reported for incidence of AD

dementia for the oldest old, aged 90 years and older. For example,

the Cache County Study [53–55] and an autopsy study [56] found

that incidence rates of AD decrease, beginning in the early 90 s. In

Figure 6. Estimated sample sizes with respect to age, per arm, to detect a 25% reduction in rate of change in MCI participants
relative to age-matched change in HCs, at the p,0.05 level with 80% power assuming a 24 month trial with scans every six
months. Sample sizes are estimated using a linear mixed effects model with fixed intercepts (no relative change at baseline) and random slopes and
linear dependence on age applied to all data available up through 36 months. Dashed lines show the 95% confidence intervals.
doi:10.1371/journal.pone.0042325.g006
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contrast, the 90+ Study examining all-cause dementia, including

60% of participants diagnosed with AD, had a larger contingent of

oldest participants, and found that dementia incidence continued

to increase with age [57]. Although our results do not directly

address the incidence of AD with age, our finding that rate of

cognitive decline decreases with baseline age suggests that for the

oldest old, clinical detection of AD, which relies on progressive

decline in cognitive ability, may be more difficult. Reduction in

CSF biomarkers of disease burden, and in atrophic changes in

brain structure, with age suggests that the newly revised criteria for

diagnosis of AD in research settings, which recommends

incorporation of these biomarkers [58], may not help overcome

this problem. It should also be noted, more broadly, that since

incidence is the number of new cases in a population in a given

time period, e.g. a year, non-constant rates of decline with age are

likely to play a role in the incidence at different ages of clinically

diagnosed AD.

The blurring of the distinction between HCs and patients with

MCI or AD with advanced age has important implications for

clinical trial design. As shown in Figures 6 and 7, all potential

outcome measures evaluated here provide significant power for

detecting disease-modifying therapeutic effects for MCI and mild

AD participants aged 65–75, with the previously reported

advantage for structural measures, such as entorhinal cortex and

hippocampus, over clinical measures [24]. However, power is

dramatically reduced with increasing age of the study sample. Due

to the exponential rise in prevalence of AD with age (through

approximately 85 years [16]), older individuals will increasingly be

more available for clinical trials as compared with younger

individuals. Yet, detecting a decrease in atrophy rate, or in rate of

clinical decline, due to a disease-modifying therapy becomes

increasingly difficult the older the study cohort. Thus, the extent to

which older individuals are represented in the study sample could

profoundly affect the power for detecting a therapeutic effect. In

particular, a small but significant disease-modifying effect, which

could significantly reduce the global burden of the disease [5],

might be found in younger cohorts but would likely not be found

in older cohorts. Given demographic trends, there is an urgent

need to develop disease-modifying therapies to avert what will

otherwise be an AD epidemic [59–61]. Since the power to detect

therapeutic effects can be reduced dramatically in older cohorts, it

is of immediate importance to consider fully cohort age in drug

discovery.

With regard to disease trajectories, the observed reduction in

rates of decline with advancing age allows for two distinct,

plausible scenarios. In the first scenario, a cognitively healthy

individual begins to experience a slightly elevated rate of decline at

an early point in life, so that over a prolonged period, tissue loss

gradually accumulates and cognitive function gradually declines.

This slow course continues into advanced ages. At some point,

despite the gradual nature of change, enough tissue loss and

cognitive impairment has ensued to enable a physician to diagnosis

the disorder.

In the second scenario, a cognitively healthy older individual

initially experiences the same rates of structural and cognitive

change as those of other cognitively healthy individuals of the

same age, but the individual begins to experience a more rapid

course of decline as symptoms develop and worsen. Rate of decline

Figure 7. Estimated sample sizes, with respect to age, per arm, to detect a 25% reduction in rate of change in AD subjects relative
to age-matched change in HCs. Other details are as described in the caption to Figure 6.
doi:10.1371/journal.pone.0042325.g007

Rates of Decline in AD Decrease with Age

PLoS ONE | www.plosone.org 9 August 2012 | Volume 7 | Issue 8 | e42325



then slows at some point, so that at an advanced age, the rate of

decline again approaches the rate observed for healthy older

individuals of the same age. In this scenario, the biomarker

trajectory follows a sigmoidal course. Despite the popularity of

sigmoidal curves for describing biomarker trajectories in AD [62–

65], and the development of mathematical models of neuron death

kinetics where neuron death is considered not to arise from

cumulative damage [66,67], there is no conclusive evidence

demonstrating a slowing in rate of brain atrophy over time within

individual AD patients. Furthermore, slowing in rate of neuronal

loss from age and disease progression might not be biologically

plausible: arguments from protein homeostasis indicate instead

that cell death is more likely to accelerate than to slow with disease

progression [15].

A recent investigation [68] of the shapes of AD biomarker

trajectories examined whether, as suggested by sigmoidal models,

hippocampal atrophy rate slowed with increasing disease severity

in four patient cohorts. Employing a liberal significance threshold

(p-value = 0.1), and restricting the sample to amyloid-positive

participants, evidence of slowing of the rate of volume loss with

increasing disease severity, as assessed with MMSE score, was

found in three cohorts when cross-sectional data were analyzed

but not when longitudinal data were analyzed. In the fourth

cohort the reverse occurred: evidence of slowing of the rate of

volume loss with increasing disease severity was found when

longitudinal data were analyzed but not when cross-sectional data

were analyzed. These inconsistencies do not strongly support the

sigmoidal model for AD-related atrophy. Furthermore, when the

sample was not restricted to amyloid-positive participants, cross-

sectional analyses consistently showed an increase in hippocampal

atrophy with increasing disease severity, and longitudinal analyses

consistently showed an increase in hippocampal atrophy rate with

increasing disease severity–results that do not support the

contention that atrophy rates eventually decelerate with advancing

disease severity.

Another possible explanation of differences in rates of decline

with age observed here is differential dropout, in which older

patients with more severe decline dropped out of the study at a

higher rate than younger individuals with more severe decline.

However, evidence suggests that such differential dropout is

unlikely to have affected the observed results. Older participants

were not more likely than younger participants to drop out after

the baseline session, and there was no difference in symptom

severity between those who dropped out after baseline versus those

who completed one or more follow-ups. However, differential

recruitment into the study may contribute to the observed results.

Participation in a trial such as ADNI requires a large commitment

of time and effort. It is possible that for the oldest old patients with

AD, if they were experiencing a rapid course of decline, they or

their caregivers may have been less willing to participate in a

burdensome, non-treatment study than those with milder decline.

Such differential enrollment, where younger but not older rapidly

declining individuals enrolled in the study seems unlikely given the

systematic decrease in rates of decline with increasing age for both

MCI and AD cohorts.

Limitations of this study include the highly select nature of the

study sample: individuals were required to be generally healthy

with no evidence of comorbid disorders that could affect study

participation, such as depression or vascular dementia. A second

limitation is the lack of histopathological verification of AD

pathology. It is possible that many participants suffer from

subclinical cerebrovascular disease, and the contribution of

cerebrovascular disease to dementia symptoms may be greater

among the very old. A recent neuropathological study [69], in

addition to finding attenuation in the association between

dementia and NFT burden in nonagenarians, also found an

increase in vascular burden in mixed pathologies in people over

90 years. This increases the possibility of misdiagnosis, particularly

since microvascular pathology and AD are synergistic in the

development of dementia in old age [70,71]. Furthermore, and

somewhat circularly, the convergent patterns in rates of decline

might themselves contribute to increased potential for misdiagno-

sis at older ages. The small number of AD individuals over the age

of 85 years is a further limitation of the study.

Despite these limitations, this study suggests that the association

between neuropathological markers and dementia attenuates with

age and needs to be taken into account in models of AD. The

degree of attenuation is remarkably uniform across diverse

markers–CSF AD-related protein densities, atrophy rates in

multiple brain regions, and rates of clinical decline–all showing

strong convergence patterns across diagnostic groups at older ages,

though it is significant that atrophy rates in the hippocampus and

particularly the entorhinal cortex indicate slower convergence. As

a result, methods for early disease detection and assessment of

therapeutic interventions cannot be applied uniformly across the

entire elderly age spectrum. Given demographic trends, in

particular the rapid growth in the proportion of very old

individuals, greater emphasis needs to be placed on further

elucidating the effects of age on the disease process to better

prepare for the diagnosis, care, and treatment of the oldest old.

Supporting Information

File S1

(DOC)

Acknowledgments

Data used in preparation of this article were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As

such, the investigators within the ADNI contributed to the design and

implementation of ADNI and/or provided data but did not participate in

analysis or writing of this report. A complete listing of ADNI investigators

can be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_

apply/ADNI_Acknowledgement_List.pdf.

Author Contributions

Conceived and designed the experiments: DH. Performed the experiments:

DH. Analyzed the data: DH. Contributed reagents/materials/analysis

tools: DH AMD. Wrote the paper: DH RSD LKM. Responsible for the

study concept and design, all levels of data analysis, drafting the report,

tables, and figures: DH. Contributed critically to data interpretation and

revision of the report: DH RSD LKM. Contributed to data acquisition and

analysis: AMD.

References

1. Hebert LE, Scherr PA, Beckett LA, Albert MS, Pilgrim DM, et al. (1995) Age-

specific incidence of Alzheimer’s disease in a community population. JAMA : the

journal of the American Medical Association 273: 1354–1359.

2. Kukull WA, Higdon R, Bowen JD, McCormick WC, Teri L, et al. (2002)

Dementia and Alzheimer disease incidence: a prospective cohort study. Arch

Neurol 59: 1737–1746.

3. Brookmeyer R, Gray S, Kawas C (1998) Projections of Alzheimer’s disease in

the United States and the public health impact of delaying disease onset.

American journal of public health 88: 1337–1342.

4. Matthews F, Brayne C (2005) The incidence of dementia in England and Wales:

findings from the five identical sites of the MRC CFA Study. PLoS Med 2: e193.

Rates of Decline in AD Decrease with Age

PLoS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e42325



5. Brookmeyer R, Evans DA, Hebert L, Langa KM, Heeringa SG, et al. (2011)
National estimates of the prevalence of Alzheimer’s disease in the United States.

Alzheimers Dement 7: 61–73.

6. Wan H, Sengupta M, Velkoff VA, De Barros KA (2005) 65+ in the United

States: 2005. In: Bureau USC, editor. Washington, D.C.: U.S. Government
Printing Office. P23–209.

7. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative
diseases. Nat Rev Neurosci 4: 49–60.

8. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease.
Nat Med 10 Suppl: S10–17.

9. DeToma AS, Salamekh S, Ramamoorthy A, Lim MH (2012) Misfolded proteins
in Alzheimer’s disease and type II diabetes. Chem Soc Rev 41: 608–621.

10. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:
329–344.

11. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related
changes. Acta Neuropathol 82: 239–259.

12. Freeman SH, Kandel R, Cruz L, Rozkalne A, Newell K, et al. (2008)

Preservation of neuronal number despite age-related cortical brain atrophy in

elderly subjects without Alzheimer disease. J Neuropathol Exp Neurol 67: 1205–
1212.

13. Price JL, McKeel DW Jr, Buckles VD, Roe CM, Xiong C, et al. (2009)
Neuropathology of nondemented aging: presumptive evidence for preclinical

Alzheimer disease. Neurobiol Aging 30: 1026–1036.

14. Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, et al. (2010) APOE

predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal
aging. Ann Neurol 67: 122–131.

15. Douglas PM, Dillin A (2010) Protein homeostasis and aging in neurodegener-
ation. J Cell Biol 190: 719–729.

16. Brumback-Peltz C, Balasubramanian AB, Corrada MM, Kawas CH (2011)
Diagnosing dementia in the oldest-old. Maturitas 70: 164–168.

17. Savva GM, Wharton SB, Ince PG, Forster G, Matthews FE, et al. (2009) Age,
neuropathology, and dementia. N Engl J Med 360: 2302–2309.

18. Stricker NH, Chang YL, Fennema-Notestine C, Delano-Wood L, Salmon DP,

et al. (2011) Distinct profiles of brain and cognitive changes in the very old with

Alzheimer disease. Neurology 77: 713–721.

19. Morris JC (1993) The Clinical Dementia Rating (CDR): current version and

scoring rules. Neurology 43: 2412–2414.

20. McKhann G, Drachman D, Folstein M, Katzman R, Price D, et al. (1984)

Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work
Group under the auspices of Department of Health and Human Services Task

Force on Alzheimer’s Disease. Neurology 34: 939–944.

21. van der Flier WM, Pijnenburg YA, Fox NC, Scheltens P (2011) Early-onset

versus late-ons et al zheimer’s disease: the case of the missing APOE varepsilon4
allele. Lancet Neurol 10: 280–288.

22. Holland D, Brewer JB, Hagler DJ, Fennema-Notestine C, Dale AM (2009)
Subregional neuroanatomical change as a biomarker for Alzheimer’s disease.

Proc Natl Acad Sci U S A 106: 20954–20959.

23. Holland D, Dale AM (2011) Nonlinear registration of longitudinal images and

measurement of change in regions of interest. Med Image Anal 15: 489–497.

24. Holland D, McEvoy LK, Dale AM (2011) Unbiased comparison of sample size

estimates from longitudinal structural measures in ADNI. Hum Brain Mapp.

25. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, et al. (2002) Whole brain

segmentation: automated labeling of neuroanatomical structures in the human
brain. Neuron 33: 341–355.

26. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, et al. (2006) An
automated labeling system for subdividing the human cerebral cortex on MRI

scans into gyral based regions of interest. Neuroimage 31: 968–980.

27. Hua X, Gutman B, Boyle C, Rajagopalan P, Leow AD, et al. (2011) Accurate

measurement of brain changes in longitudinal MRI scans using tensor-based
morphometry. NeuroImage 57: 5–14.

28. Fox NC, Ridgway GR, Schott JM (2011) Algorithms, atrophy and Alzheimer’s
disease: cautionary tales for clinical trials. Neuroimage 57: 15–18.

29. Jack CR Jr, Barkhof F, Bernstein MA, Cantillon M, Cole PE, et al. (2011) Steps
to standardization and validation of hippocampal volumetry as a biomarker in

clinical trials and diagnostic criterion for Alzheimer’s disease. Alzheimers
Dement 7: 474–485 e474.

30. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, et al. (2012) The
Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since

its inception. Alzheimers Dement 8: S1–68.

31. Jack CR Jr (2012) Alzheimer disease: new concepts on its neurobiology and the

clinical role imaging will play. Radiology 263: 344–361.

32. Lee GJ, Lu PH, Hua X, Lee S, Wu S, et al. (2012) Depressive symptoms in mild

cognitive impairment predict greater atrophy in Alzheimer’s disease-related
regions. Biol Psychiatry 71: 814–821.

33. Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template
estimation for unbiased longitudinal image analysis. Neuroimage.

34. Leung KK, Ridgway GR, Ourselin S, Fox NC (2012) Consistent multi-time-
point brain atrophy estimation from the boundary shift integral. Neuroimage 59:

3995–4005.

35. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL (1982) A new clinical

scale for the staging of dementia. The British journal of psychiatry : the journal
of mental science 140: 566–572.

36. Fitzmaurice GM, Laird NM, Ware JH (2011) Applied longitudinal analysis.
Hoboken, N.J.: Wiley. xxv, 701 p.

37. Rosner B (2006) Fundamentals of biostatistics. Belmont, CA: Thomson-Brooks/

Cole. xix, 868 p.

38. Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary

changes. Neurobiol Aging 16: 271–278; discussion 278–284.

39. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006)

Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin

sections and immunocytochemistry. Acta Neuropathol 112: 389–404.

40. Buerger K, Ewers M, Pirttila T, Zinkowski R, Alafuzoff I, et al. (2006) CSF

phosphorylated tau protein correlates with neocortical neurofibrillary pathology

in Alzheimer’s disease. Brain 129: 3035–3041.

41. Desikan RS, McEvoy LK, Thompson WK, Holland D, Brewer JB, et al. (2012)

Amyloid-beta-Associated Clinical Decline Occurs Only in the Presence of

Elevated P-tau. Arch Neurol.

42. Desikan RS, McEvoy LK, Thompson WK, Holland D, Roddey JC, et al. (2011)

Amyloid-beta associated volume loss occurs only in the presence of phospho-tau.

Ann Neurol.

43. Coley N, Andrieu S, Jaros M, Weiner M, Cedarbaum J, et al. (2011) Suitability

of the Clinical Dementia Rating-Sum of Boxes as a single primary endpoint for

Alzheimer’s disease trials. Alzheimers Dement 7: 602–610 e602.

44. Bernick C, Cummings J, Raman R, Sun X, Aisen P (2012) Age and Rate of

Cognitive Decline in Alzheimer Disease: Implications for Clinical Trials. Arch

Neurol.

45. Prohovnik I, Perl DP, Davis KL, Libow L, Lesser G, et al. (2006) Dissociation of

neuropathology from severity of dementia in late-ons et al zheimer disease.

Neurology 66: 49–55.

46. Jack CR Jr, Weigand SD, Shiung MM, Przybelski SA, O’Brien PC, et al. (2008)

Atrophy rates accelerate in amnestic mild cognitive impairment. Neurology 70:

1740–1752.

47. Kennedy KM, Erickson KI, Rodrigue KM, Voss MW, Colcombe SJ, et al.

(2009) Age-related differences in regional brain volumes: a comparison of

optimized voxel-based morphometry to manual volumetry. Neurobiol Aging 30:

1657–1676.

48. Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, et al. (2011)

Consistent neuroanatomical age-related volume differences across multiple

samples. Neurobiol Aging 32: 916–932.

49. Schuff N, Tosun D, Insel PS, Chiang GC, Truran D, et al. (2012) Nonlinear

time course of brain volume loss in cognitively normal and impaired elders.

Neurobiol Aging 33: 845–855.

50. Hastie T, Tibshirani R (1990) Generalized additive models. London; New York:

Chapman and Hall. xv, 335 p.

51. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, et al. (2005)

Regional brain changes in aging healthy adults: general trends, individual

differences and modifiers. Cereb Cortex 15: 1676–1689.

52. Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U (2010)

Trajectories of brain aging in middle-aged and older adults: regional and

individual differences. Neuroimage 51: 501–511.

53. Miech RA, Breitner JC, Zandi PP, Khachaturian AS, Anthony JC, et al. (2002)

Incidence of AD may decline in the early 90 s for men, later for women: The

Cache County study. Neurology 58: 209–218.

54. Khachaturian AS, Corcoran CD, Mayer LS, Zandi PP, Breitner JC (2004)

Apolipoprotein E epsilon4 count affects age at onset of Alzheimer disease, but

not lifetime susceptibility: The Cache County Study. Arch Gen Psychiatry 61:

518–524.

55. Breitner JC, Wyse BW, Anthony JC, Welsh-Bohmer KA, Steffens DC, et al.

(1999) APOE-epsilon4 count predicts age when prevalence of AD increases, then

declines: the Cache County Study. Neurology 53: 321–331.

56. Jellinger KA, Attems J (2010) Prevalence of dementia disorders in the oldest-old:

an autopsy study. Acta Neuropathol 119: 421–433.

57. Corrada MM, Brookmeyer R, Paganini-Hill A, Berlau D, Kawas CH (2010)

Dementia incidence continues to increase with age in the oldest old: the 90+
study. Ann Neurol 67: 114–121.

58. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, et al.

(2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations

from the National Institute on Aging-Alzheimer’s Association workgroups on

diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7: 263–269.

59. Sperling RA, Jack CR Jr, Aisen PS (2011) Testing the right target and right drug

at the right stage. Sci Transl Med 3: 111cm133.

60. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting

the global burden of Alzheimer’s disease. Alzheimers Dement 3: 186–191.

61. Alzheimer’s Association (2010) 2010 Alzheimer’s disease facts and figures.

Alzheimers Dement 6: 158–194.

62. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, et al. (2010)

Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological

cascade. Lancet Neurol 9: 119–128.

63. Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM (2010) The

clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6: 67–77.

64. Trojanowski JQ, Vandeerstichele H, Korecka M, Clark CM, Aisen PS, et al.

(2010) Update on the biomarker core of the Alzheimer’s Disease Neuroimaging

Initiative subjects. Alzheimers Dement 6: 230–238.

65. Caroli A, Frisoni GB (2010) The dynamics of Alzheimer’s disease biomarkers in

the Alzheimer’s Disease Neuroimaging Initiative cohort. Neurobiol Aging 31:

1263–1274.

Rates of Decline in AD Decrease with Age

PLoS ONE | www.plosone.org 11 August 2012 | Volume 7 | Issue 8 | e42325



66. Lomasko T, Lumsden CJ (2009) One-hit stochastic decline in a mechanochem-

ical model of cytoskeleton-induced neuron death III: diffusion pulse death zones.

J Theor Biol 256: 104–116.

67. Clarke G, Lumsden CJ, McInnes RR (2001) Inherited neurodegenerative

diseases: the one-hit model of neurodegeneration. Human molecular genetics 10:

2269–2275.

68. Jack CR Jr, Vemuri P, Wiste HJ, Weigand SD, Lesnick TG, et al. (2012) Shapes

of the Trajectories of 5 Major Biomarkers of Alzheimer Disease. Arch Neurol.

69. Sinka L, Kovari E, Gold G, Hof PR, Herrmann FR, et al. (2010) Small vascular

and Alzheimer disease-related pathologic determinants of dementia in the
oldest-old. J Neuropathol Exp Neurol 69: 1247–1255.

70. Kovari E, Gold G, Herrmann FR, Canuto A, Hof PR, et al. (2007) Cortical

microinfarcts and demyelination affect cognition in cases at high risk for
dementia. Neurology 68: 927–931.

71. Gold G, Giannakopoulos P, Herrmann FR, Bouras C, Kovari E (2007)
Identification of Alzheimer and vascular lesion thresholds for mixed dementia.

Brain 130: 2830–2836.

Rates of Decline in AD Decrease with Age

PLoS ONE | www.plosone.org 12 August 2012 | Volume 7 | Issue 8 | e42325


